首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5306篇
  免费   776篇
  国内免费   616篇
化学   1861篇
晶体学   81篇
力学   770篇
综合类   97篇
数学   1211篇
物理学   2678篇
  2024年   9篇
  2023年   51篇
  2022年   72篇
  2021年   125篇
  2020年   107篇
  2019年   104篇
  2018年   98篇
  2017年   158篇
  2016年   214篇
  2015年   162篇
  2014年   275篇
  2013年   400篇
  2012年   304篇
  2011年   388篇
  2010年   336篇
  2009年   356篇
  2008年   363篇
  2007年   401篇
  2006年   332篇
  2005年   331篇
  2004年   258篇
  2003年   238篇
  2002年   235篇
  2001年   169篇
  2000年   163篇
  1999年   130篇
  1998年   106篇
  1997年   97篇
  1996年   79篇
  1995年   84篇
  1994年   85篇
  1993年   78篇
  1992年   53篇
  1991年   52篇
  1990年   37篇
  1989年   31篇
  1988年   26篇
  1987年   17篇
  1986年   19篇
  1985年   23篇
  1984年   18篇
  1983年   8篇
  1982年   27篇
  1981年   12篇
  1980年   18篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   11篇
  1974年   4篇
排序方式: 共有6698条查询结果,搜索用时 281 毫秒
41.
Nitroxynil(NIT) is a commonly used anti-liver fluke drug for cattle and sheep, Its solubility is closely related to its preparation. In this work, the molar solubility of NIT in nine pure solvents (methanol, ethanol, 1,2-propanediolethyl, isopropanol, ethyl acetate, acetonitrile, n-butanol, phemethylol) and two kinds of binary mixtures with different ratio(ethanol + phemethylol; ethanol + acetonitrile) was determined by shake flask method over the temperature from 278.15 ~ 323.15 K at atmosphere pressure. Results show that the solubility of NIT in all tested solvents was increased with raised temperature. In mono-solvents, the mole fraction solubility of NIT was highest in phemethylol and the solubility order is: phemethylol > acetonitrile > ethyl acetate > methanol > n-butanol > ethanol > 1,2-propanediolethyl > isopropanol > water. In binary solvents, the mole fraction solubility increased with increasing ratio of phemethylol/acetonitrile. In mono-solvents, the modified Apelblat equation, λh equation, Van't Hoff model were applied to correlate the solubility data. In binary solvents, the modified Apelblat equation, λh equation, GSM model and Jouyban-Acree model were to correlate the solubility data. Solubility order of NIT in nine pure solvent and two binary solvent systems were analysed by using the Hansen solubility parameter (HSP). Activity coefficient was to access the solute–solvent molecular interactions. In addition, the dissolution of NIT is an endothermic and entropy-friendly process, since thermodynamic parameters such as enthalpy, entropy, and apparent standard Gibbs free energy are all greater than zero. The results will supply some essential data on recrystallization process, purification and formulation development of NIT in pharmaceutical applications.  相似文献   
42.
《印度化学会志》2023,100(1):100857
Recently, the use of CZTS as the basis for other generation of low cost thin films solar cells has stimulated further researches. Its excellent p-type absorber nature, relatively high absorption coefficient and ideal energy band-gap of 1.5eV motivated these efforts. Additionally, CZTS consist of earth-abundant, cheap and non-toxic elements with very low manufacturing cost. Initially, copper indium gallium selenide (CIGS) solar cell device emerged but suffered limitations in further development because of rare indium and gallium in the device structure therefore, CZTS is recently preferred as an alternative to CIGS commercial solar cell absorber layer. In this work, solution mixture of CZTS and PVA was deposited on a substrate at temperature of 150 °C. Sensitive spray pyrolysis was used to grow the thin films where calculated amount of the precursor mixture was allowed to fall and be deposited on a heated substrate to form CZTS/PVA thin films. Subsequently, the thin film samples were annealed at a temperature of 200oCfor 1 h to achieving pure crystalline thin film formation. SEM, XRD analysis, Optical, Solid State properties and Raman analysis were studied. The XRD analysis showed that the thin films fell into the pure kesterite structure of CZTS. Results show that produced thin films exhibited higher absorption coefficient and optical conductivity than pure CZTS, 106 m?1 and 1014(S?1) against 104cm?1 and 1012(S?1) respectively. The band-gap is between 1.53eV and 1.73eV. Using a PVA concentration of 0.05 M yielded highest absorbance and optical conductivity with lowest real dielectric constant and transmittance. These improved optical, electrical and solid state properties suitably qualify these thin films as absorber layer material for solar cell applications.  相似文献   
43.
Thermophoresis of charged spheroids has been widely applied in biology and medical science. In this work, we report an analysis of the anisotropic thermophoresis of diluted spheroidal colloids in aqueous media for extremely thin EDL cases. Under the boundary layer approximation, we formulate the thermophoretic velocity, the thermophoretic force, and the thermodiffusion coefficient of a randomly dispersed spheroid. The parametric studies show that under the aforementioned conditions, the thermophoresis is anisotropic and its thermodiffusion coefficient should be considered as a vector, D T. The thermodiffusion coefficient values and directions of D T are strongly related to the aspect ratio and the angle θ between the externally applied temperature gradient and the particle's axis of revolution: The increasing aspect ratio enlarges the thermodiffusion coefficient value DT of prolate (oblate) spheroids to a constant value when θ < 60° (θ > 45°), and it reduces DT of prolate (oblate) spheroids to a constant value when θ > 60° (θ < 45°). The thermodiffusion coefficient direction of both prolate and oblate spheroids deviates slightly from −∇T for a small aspect ratio, and such deviation becomes serious for a large aspect ratio.  相似文献   
44.
Developing an effective method for improving the reproducibility of positive temperature coefficient(PTC) effect is of great significance for large-scale application of polymer based PTC composites, owing to its contribution to the security and reliability. Herein, we developed a carbon black(CB)/high density polyethylene(HDPE)/poly(vinylidene fluoride)(PVDF) composite with outstanding PTC reproducibility, by incorporating 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide([OMIm][NTf_2]) into the composite. After multiple repeated temperature cycles, the PTC performance of as-prepared material keeps almost unchanged and the varition of resistance at room temperature is less than 7%. Our studies revealed that [OMIm][NTf2] contributes to the improvement of PTC reproducibility in two ways:(i)it acts as an efficient plasticizer for refining the co-continuous phase morphology of HDPE/PVDE blends;(ii) it inhibits the crystallization of PVDF through the dilution effect, leading to more overlaps of the volume shrinkage process of HDPE and PVDF melt which results in the decrease of interface gap between HDPE and PVDF. This study demonstrated that ionic liquids as the multifunctional agents have great potential for improving the reproducibility in the application of the binary polymer based PTC composites.  相似文献   
45.
The ability to separate enzymes, nucleic acids, cells, and viruses is an important asset in life sciences. This can be realised by using their spontaneous asymmetric partitioning over two macromolecular aqueous phases in equilibrium with one another. Such phases can already form while mixing two different types of macromolecules in water. We investigate the effect of polydispersity of the macromolecules on the two-phase formation. We study theoretically the phase behavior of a model polydisperse system: an asymmetric binary mixture of hard spheres, of which the smaller component is monodisperse and the larger component is polydisperse. The interactions are modelled in terms of the second virial coefficient and are assumed to be additive hard sphere interactions. The polydisperse component is subdivided into sub-components and has an average size ten times the size of the monodisperse component. We calculate the theoretical liquid–liquid phase separation boundary (the binodal), the critical point, and the spinodal. We vary the distribution of the polydisperse component in terms of skewness, modality, polydispersity, and number of sub-components. We compare the phase behavior of the polydisperse mixtures with their concomittant monodisperse mixtures. We find that the largest species in the larger (polydisperse) component causes the largest shift in the position of the phase boundary, critical point, and spinodal compared to the binary monodisperse binary mixtures. The polydisperse component also shows fractionation. The smaller species of the polydisperse component favor the phase enriched in the smaller component. This phase also has a higher-volume fraction compared to the monodisperse mixture.  相似文献   
46.
The ring-polymer molecular dynamics (RPMD) was used to calculate the thermal rate coefficients and kinetic isotope effects of the heavy-light-heavy abstract reaction Cl+XCl\begin{document}$ \rightarrow $\end{document}XCl+Cl (X = H, D, Mu). For the Cl+HCl reaction, the excellent agreement between the RPMD and experimental values provides a strong proof for the accuracy of the RPMD theory. And the RPMD results are also consistent with results from other theoretical methods including improved-canonical-variational-theory and quantum dynamics. The most novel finding is that there is a double peak in Cl+MuCl reaction near the transition state, leaving a free energy well. It comes from the mode softening of the reaction system at the peak of the potential energy surface. Such an explicit free energy well suggests strongly there is an observable resonance. And for the Cl+DCl reaction, the RPMD rate coefficient again gives very accurate results compared with experimental values. The only exception is at the temperature of 312.5 K, results from RPMD and all other theoretical methods are close to each other but slightly lower than the experimental value, which indicates experimental or potential energy surface deficiency.  相似文献   
47.
In the study, the conductive graphite flakes filled poly(urethane-imide) composites (PUI/GFs) with high performance were constructed by the thermal imidization self-foaming reaction. It was found that the foaming action could promote the redistribution of GFs during curing process and the formation of stable linear conductive pathways. The percolation threshold of PUI/GFs composites was lowered from 1.26 wt% (2000 mesh GFs) or 0.86 wt% (1000 mesh GFs) to 0.79 wt% (500 mesh GFs), which were relatively low percolation thresholds for polymer/GFs composites so far. When the content of 500 mesh GFs was 4.0 wt%, the electrical conductivity of the composite was as high as 3.96 × 10?1 S/m. Also, a poly(urethane-imide) (PUI) matrix with excellent thermal stability (Td10%: 334.97 °C) and mechanical properties (elongation at break: 324.52%, tensile strength: 15.88 MPa) was obtained by introducing the rigid aromatic heterocycle into the polyurethane (PU) hard segments. Moreover, the zero temperature coefficient of resistivity for the composites was observed at the temperature range from 30 °C to 200 °C. Consequently, PUI/GFs composites may provide the novel strategy for considerable conductive materials with high thermal stability in electrical conductivity.  相似文献   
48.
Novel Mn3O4-promoted double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst was constructed by one-step synthesis method and two-step synthesis method. The X-ray powder diffraction, Fourier transform infrared spectrum, X-ray photoelectron spectroscopy, optical and photoluminescence demonstrated that the MgAl2O4/CeO2/Mn3O4 heterojunction photocatalyst was synthesized by the two-step synthesis method comprehends a high crystallinity, charge carrier migration and separation efficiency, and relatively low optical absorption coefficient. The MgAl2O4/CeO2/Mn3O4 heterojunction photocatalysts were efficiently used as simulated sunlight-driven n-n and p-n double junction photocatalyst for the simultaneous degradation of methylene blue (MB) dye. The continuous double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunctions strengthened the function of single n-n or p-n junction and guided the charge carrier migration and separation direction; thus, the oxidation and reduction reactions occur at the active site of spatial separation and prevent the recombination of electrons and holes. The results suggest that the continuous double p?n junction MgAl2O4/CeO2/Mn3O4 heterojunctions are very promising candidate material for enhancing the photocatalytic activity in the photocatalytic degradation of MB dye.  相似文献   
49.
50.
In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γφ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions containing (Electrolyte + MEG), (Electrolyte + DEG) and (Electrolyte + TEG), respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号